Embedding Rings with Krull Dimension in Artinian Rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artinian Band Sums of Rings

Band sums of associative rings were introduced by Weissglass in 1973. The main theorem claims that the support of every Artinian band sum of rings is finite. This result is analogous to the well-known theorem on Artinian semigroup rings. 1991 Mathematics subject classification (Amer. Math. Soc): primary 16P20, 16W50; secondary 20M25. Let B be a band, that is, a semigroup consisting of idempoten...

متن کامل

Bounds in Polynomial Rings over Artinian Local Rings

Let R be a (mixed characteristic) Artinian local ring of length l and let X be an n-tuple of variables. This paper provides bounds over the ring R[X] on the degrees of the output of several algebraic constructions in terms of l, n and the degrees of the input. For instance, if I is an ideal in R[X] generated by polynomials gi of degree at most d and if f is a polynomial of degree at most d belo...

متن کامل

On Gröbner bases and Krull dimension of residue class rings of polynomial rings over integral domains

Given an ideal a in A[x1, . . . , xn] where A is a Noetherian integral domain, we propose an approach to compute the Krull dimension of A[x1, . . . , xn]/a, when the residue class ring is a free A-module. When A is a field, the Krull dimension of A[x1, . . . , xn]/a has several equivalent algorithmic definitions by which it can be computed. But this is not true in the case of arbitrary Noetheri...

متن کامل

Characterizations of Krull Rings with Zero Divisors

We show that a ring is a Krull ring if and only if every nonzero regular prime ideal contains a t-invertible prime ideal if and only if every proper regular principal ideal is quasi-equal to a product of prime ideals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1996

ISSN: 0021-8693

DOI: 10.1006/jabr.1996.0186